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Abstract--A lumped heat-transfer coefficient has been developed for periodically heated and subsequently 
cooled hollow cylinders of infinite extent. This corrected heat-transfer coefficient incorporates the effect of 
the wall resistance and preserves the heat transferred per period. The treatment has been generalized by 
considering the heating or cooling to take place at the inside or at the outside surface of the hollow cylinder. 
To evaluate the lumped heat-transfer coefficient, all the necessary time-mean temperatures have been 
determined analytically. The subsequent expressions for numerical answers were evaluated on a IBM 7094 
digital computer. The results are presented graphically in the form of a correction factor for the heat- 

transfer coefficient. Finally, an example is presented to show the practical application of the results 

NOMENCLATURE 

constant of integration ; 
constant of integration 
term of the solution 

of the nth 
defined by 

equations (A.12), (A.20a, b), and 
(A.20) ; 
constant of integration; 
constant of integration of the nth 
term of the solution during the 
cooling period, defined by equations 
(A.20a, b) and (A.20); 
constant of integration defined by 
equation (A.7b); 
constant of integration ; 
specific heat of conducting medium 
[Btu/lb “F] ; 
constant of integration defined by 
equation (A.7c); 
function of the variable defined by 
equation (5a) ; 
constant representing heat flux im- 

_ 
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tory. 

posed at the boundary r = rr 
[Btu/h] ; 
function defined by equation (A. 14~) ; 
function of Bessel functions defined 
by equation (A.12a) ; 
constant defined by equation (B.3a); 
heat-transfer coeffkient 
[Btu/h ft’ OF] ; 
lumped heat-transfer coefficient 
[Btu/hft”F] ; 
constant of integration defined by 
equation (B.3b); 
factor related with the nth term of the 
solution and defined by equation 
(A.20) ; 
conductivity of conducting medium 
[Btu/hft2 “F/ft] ; 
constant of integration appearing in 
equation (B.5); 
volume of cylindrical wall per unit 
surface area [ft] ; 
function defined by equation (5~); 
radius ; 
radius of heating or cooling surface 
[ft] ; 
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radius of insulated surface [ft] ; 
temperature c”F] ; 

space-mean temperature of conduct- 
ing medium [“F] ; 

temperature of hollow cylinder at the 
heat-transfer surface, T = r1 [“F] ; 
bulk temperature of fluid in contact 
with the hollow cylinder at the heat- 
transfer surface [“F] ; 
two different solutions of T defined 
by equations (A.7) and (A.12) ; 
parameter of Laplace transforma- 
tion ; 
time [h] ; 
variable defined by equat,ion (B.14a) ; 
function of x defined by equation 
(B.14b); 
first derivative of y, (dy/dx); 
function defined by equations (A.9) 
and (A.lOa). 

Greek symbols 
thermal diffusivity ; 
ratio of r2 to ri ; 
constant from [4] also defined by 
equation (B.l); 
radial wall thickness of hollow 
cylinder [ft] ; 
dummy variable corresponding to z ; 
function of z in the separation of 
variables technique ; 
special decay constant from [4] ; 
ratio of heating and cooling periods, 

(zh/zc) ; 

ratio of radius to radial wall thick- 
ness (r/6) ; 
harmonic mean period, equal to 

2/W, + l/%l); 
mass density of conducting medium ; 
constant from [4], also defined by 
equation (B.l) ; 
dimensionless time, (at/S2); 
dimensionless time span for heating ; 
dimensionless time span for cooling; 
correction factor ; 
function defined by equation (5b). 

Primed quantities refer to values of the res- 
pective symbols during the heating period. The 
same symbols represent the cooling period if 
they are double-primed. Underlined letters 
represent Laplace Transforms of the respective 
symbols. 

INTRODUCTION 

IN CERTAIN engineering problems involving 
periodic heat-transfer processes, the solution of 
the differential equations describing the per- 
formance of the system can be made easier by 
means of a lumped heat-transfer coefficient. 
The correction factor used for this purpose 
accounts also for the effect of the wall resistance 
besides the fluid resistance. Hausen, in his 
studies on regenerators, developed a method to 
determine such a correction factor corres- 
ponding to the three cases of periodically 
heated and cooled slabs, circular cylinders and 
spheres [l]. Recently, Butterfield et al. [Z] 
developed a correction factor in a graphical 
form by solving the pertinent differential equa- 
tions by the finite difference technique. The 
cases they treated were those for a hollow 
square section, a hollow cylinder and a slab. 

In the present paper a lumped heat-transfer 
coefficient is developed for an infinitely long 
hollow cylinder and a correction factor is 
determined therefrom. The cylinder is being 
heated periodically at one surface while the 
other surface is insulated The method employed 
is similar to the analytical method of Hausen. 
The main assumptions are that the heat- 
transfer coefficients are constant and that the 
temperature difference between the fluid tem- 
perature and the cylinder wall surface tempera- 
ture remains unchanged. This second assump- 
tion essentially means that the cylinder is 
heated by a constant heat flux. 

The work of this paper was motivated by the 
necessity of finding a lumped heat-transfer co- 
efficient to use in the design of regenerative heat 
exchangers having circular checkerwork 
section. It must be pointed out that the assump- 
tion of a constant temperature difference bet- 
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ween the flowing gas and the surface of the wall where 
prevails essentially in the middle portion of the 
regenerator Cl]. 

STATEMENT OF THE PROBLEM 

Given an infinitely long hollow cylinder of 
circular cross-section, with constant properties It is shown in Appendix A that the correction 
insulated along the .periphery at r = rz and factor @, is a function of the harmonic mean 
tribally heated and cooled, res~tively, by period lI, the ratio of the radii of the insulated 
applying a constant heat flux on the surface at surface over the heat transfer surface, and the 
T = ri. The variable wall temperature is re- ratio of the heating and cooling periods; i.e. 
placed by its space-mean temperature T,, 
(lumped wall). A lumped heat-transfer co- @ = @UT B, CL). (4) 
efficient h*, is introduced to account for the wall 
resistance and to keep the heat transferred per 
period unchanged With this postulation, h* is 

Equation (3a) reveals that @ can be obtained 

defined as follows : 
from a knowledge of T, and T,, quantities that 
can be found directly from the mathematical 

h* [ (T, - T,)dC = h [ (Ir, - T,) d& (l) 
solution of the problem. This solution is also 
presentoj in Appendix A 

The time-mean of equation (1) gives 

h*(‘f’, - T,) = h(T - T,) 

or 

PREDATION OF RESULTS 

(W The solution presented in Appendix A defines 
the correction factor @, by the equation 

1 1 ‘ii,-?& 
I-=- _. [ 1 h* h T,-z WO 

Equation (2b) is written in a more convenient where 

form below : 

1 1 -=:_ 
c 1 I+Sj 

h* h 3k (3) 
F(b) I 3C84(4 m B - 3) + 4i32 - 11 

4(8 - Q3 (B + I)2 

(5a) 

and 

(1 - exp [- J+$!(l + ~)/2~]1). (1 - exp C- 4%W + PV~II 

(1 - exp [ - $,2n(l + cl)“/2Plt ’ Ob) 

Here, 

and & are the roots of the equation 
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This equation was solved 0~ an IBM 7094 
digital computer and the roots, A, were deter- 
mined. Some of the roots were also compared 
with the values given in [3]. The first live roots 
of equation (5d) are listed in Table 1.t 

ing infinity, i.e. n + m or l/n -+ 0, equation 
(5) becomes 

lim CP = F(b) 
n-m 

since 

Equation (5) was also programmed and 
solved for CD on the 7094 computer. The results 
are presented in graphical form in Figs. 1-6, 
where CD is plotted versus l/n with p and f3 as 
parameters. In the limiting case of L’ approach- 

lim x(b, n, Jo) = 0. 
n-+m 

On the other hand, if fl approaches the value of 
one, F(B) attains the value of 1 and x(/?, K P) 
takes the form 

(6) 

(1 - exp [- n2R2(1 + /A) n/2]} (7) 

Thus, 

03 

li,@=l-; 
1 

B+l CL 1 { 1 - exp (- [n2z2(1 + cl) n/2p])}. { 1 - exp (- [n2z2(l + P) 17/Z])} 

&+ { 1 - exp (- [n2n2(1 + P)~ lI/2p])} 
II=1 

(8) 

Table 1 

B 

0.02 - 3.75967 
0.1 - 3.54685 
0.2 - 3.38860 
0.4 - 3.23471 
0.5 - 3.19658 
0.6 - 3.17204 
0.8 -3.14751 
1.0 3.15149 
1.2 2.14555 
1.4 3.15498 
1.5 3.1&94 
1.6 3.16746 
1.8 3.18169 
2.0 3.19658 
2.5 3.23471 
3.0 3.27128 
3.5 3.30500 
4.0 3.33563 

- 6.89038 
- 6.59754 
- 644432 
- 6.33464 
-6.31235 
- 6.29891 
- 6.28616 

6.28319 
6.28532 
6.28997 
6.29306 
6.29648 
6.30407 
6.31235 
6.33464 
6.35768 
6.38052 
6.40269 

- 1oGo@41 
- 9.67347 
- 9.54128 
- 9.45988 
- 944447 
- 9.43533 
- 9.42676 

942478 
9.42610 
9.42926 
9.43149 
9.43369 
9.43882 
944447 
9.45988 
9.47618 
9.49274 
9.50922 

- 13.24224 
- 12.76974 
- 12.65684 
- 12.59292 
- 12.58120 
- 12.57431 
- 12.56786 

12.56637 
12.56737 
12.57005 
12.57134 
12.56540 
12.47693 
12.58120 
1259292 
1260544 
12.61829 
12.63122 

- 16.21753 
- 15.87900 
- 15.78164 
- 15.72929 
- 15.71992 
- 15.71432 
- 15.70916 

15.70796 
15.70876 
15.71069 
15.71225 
15.71332 
15.71367 
15.71992 
15.72929 
15.73942 
15.74987 
15.76046 

Equation (8) is identical with Hausen’s equation 

t The roots for /? < 1 are deduced from the roots for for a slab, which is the limiting case when j? 
B > 1 by the equation IlnCBj = - &Ct,Bj approaches one. 
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ik 
FIG. 1. Correction factor, @, for p = 1 and /I = 0+3,0.4.0.1,0. 

A 

l-l 
,.olo 9 e 7 6 5 4 3 

8 8 

FIG. 3. Cbrrection factor, @, for’p = 5 and B = 0.8,O.q 0.1, 0. 

ii 
FIG. 2. Correction factor, @, for p = 3 and /3 = OG3,O.q 0.1, 0. 
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FIG. 4. Correction factor, @, fort = 1 and /? = 1.0,2.0, 3.0,4.0. 
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_!_ 
n 

A 

n 
FLG. 5. Correction factor, @, for p = 3 and /I = 1.9 2a, 340 4.0. 

The validity of the results of the present paper 
for large values of the periods has been proven 
by the lumped parameter technique of [4] and 
is presented in Appendix B. 

heat-transfer coelIicients during the heating and 
cooling periods are 8 and 6 Btu(hft2 “F, res- 
pectively. For a heating period of 3 h and a 
cooling period of 1 h 

A comparison of the results of this paper with 
those developed in [2] shows a large dis- 
crepancy for all II > 0.25 (see Fig. 4). It is 
interesting to observe that the larger the 
harmonic mean of the periods, the larger the 
dieerence between the values of @ in the two 
papers. The results of the present paper for 
large values of n have been checked by the 
method of [4], which is presented in Appendix 
B. The following example will help the reader 
apply these results. 

0.025 x 1 t 8 0.025 x 3 24 
Zh= OS125 = 5 ’ ‘c = o.1252 = 7 

where 0.125 = 6 and 6 = r2 - ri. 

Fig. 5, with p = 3 and /3 = 2, gives @ = 0.9. 

Example. A cylindrical regenerator of I.D. 
0,125 ft and 0-D. 0.25 ft is made of superduty 
lireclay brick with the following properties: 
p = 100-140 lb/ft3, c = O-3 Btu,‘lb”F, k = 0.9 
Btu/hft “F, a = 0*9/0,3 x 120 = 0.025 ft’/h. The 

1 
-==1+0.9xP=_ 

0.125 1 
h*’ 8 3x0.9 6’ 

1 1 0.9 0,125 5 -=- 

h*” 6 

+ 

3x0-9 =z 

Hence, 

I 
n 

FIG. 6. Correction factor, Qi, for p = 5 and b = 1.0,2.0,3.0,40. 
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and 

jr*’ = fj 
Btu 

h/ft2 “F 

Btu 
/$*‘I = 4.8 

iis- 
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APPENDIX A 

The differential equation governing the heat Bow in the system is 

a2T ia?- 18T 
&T+;z=;x 

The boundary conditions pertinent to the problem are 

aT 0 ar= at r = r2 

8T F, -- 
%= k 

at T = rl. 

The initial conditions are those of cyclic ~~lib~u~ namely 

T’(0) = T”(z,) 

TI(Z*) = T’(0). 

Method of solution 
Introducing the d~ensionl~ parameters 

the above equations become 

d2T li7T i3T 
3p43if=aZ 

i?T -= 
a< O 

at C = T2 

aT F,6 
z=- k 

at 5=rl. 

WW 

(k2b) 

(A.24 

(A.2d) 

(A.3) 

(A-4) 

(AW 

(A.4b) 

This nonhomogeneous problem can be broken into two simpler ones. Thus, we select 
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T = Tl + T, (A.3 

where Tl must satisfy equations (A.4), (A.4a), and (A.4b) and T, must satisfy equations (A.4), (A.4a) 
and 

From equations (A.4), (A.4a), and (A.4b), solved for T,, one can easily ascertain that 

Tl = at2 + b In 5 + cr 

where 

(A-7) 

a = (&%)/P~(~~ - <:)I (A.7a) 

b = - (WL53/C&: - ~5f)l (A.7b) 

c = (W&,)/CW? - &I. (A.7c) 

Meanwhile, equations (A.4), (A.4a) and (A.6), with T = T,, take the form 

a2T2 1 JT, aT2 
2+ri=x 
x 

aT2 

ay=O 
at cl = t2 

aT2 

ay=O 

at 5 = 2j1. 

Separation of variables with 

renders the solutions 

and 

where 1 is a constant. 

S(z) = Cexp(-J2z) 

(A.61 

(A-8) 

(A.Sa) 

(A.8b) 

(A.9) 

(ASOa) 

(A. lob) 

The application of the boundary conditions (A.8a) and (A.8b) on equations (A.lOa) gives the 
following transcendental equation, the solution of which supplies information on the eigenvalues 2, : 

Also 

(A.1 la) 

A=-_B*=_B~. 
1 n2 1 nl 

(A.1 lb) 
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Thus, 

T2 = f A,exp(- &)G, 
n=l 

where 

Now, 

T, = 
2 f 

2 
i -r1 

rT(r) dr 
r2 

ri 

T, = (; _ r: U(5) d5. 

(A.12) 

(A.12a) 

(A.13a) 

(A.13b) 

equation (A. 13b) gives 

or 

T,, = CT + 051, t-2) (A.14a) 

T, = T + fKI, r2) - at2 - b In < (A. 14b) 

where 

(A.lk) 

Equation (A.14b) can be written for TI as follows : 

T = T,, + ati2 + b In 5 - .fXl, t2). (A.15) 

Thus, the complete solution of the original differential equation for T, under boundary conditions 
(A.4a) and (A.4b) is 

T = T&4 + 4’ + b In t - f(tl, t2) + 2 A, exp (- n,‘z) G.. 
n=l 

(A.16) 
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During the heating and cooling periods, the following equations hold, respectively : 

II” = WI + u’? + b’ ln t - f’K1, t2) + $, A, exp (- &I G,(M 

T” = T;(z) + a”? + b” In 5 - f”(<,, t2) + $, B, exp (- J$) G&r). 

(A.17a) 

(A.17b) 

The constants A, and B, are then determined from the conditions of cyclic equilibrium: 

T’(0) = T”(r,) (A.2c) 

T’(r& = T”(0). (A.2d) 

Thus, 

(a’ - a”) t2 + @’ - b”) ln 5 + .lY1, t2) - f’(51, t2) = c, (4, exp (- &A 4) GM) 64.18) 

(a’ - a”) l2 + @’ - b”) ln 5 + _13Z1, t2) - f’(tl, t2) = nz, [B, - 4 exp (- ,&,)] G&5). 

(A.19) 

The usual orthogonality relations provide the following system of equations for A,, and B, : 

B,exp(- A&) - A, = K, (A.20a) 

B, - A, exp (- A$&= K, (A.20b) 

where 

[ [(a’ - u”) l3 + (b’ - b”) 5 In l] G&2,5) d< 

K, = 

‘i 5 G&3 d5 ’ 

(A.2Oc) 

fl 

Introducing the corresponding equations for a’, a”, b’, and b” and using the heat balance relation 

For, = F;;r, (A.2Od) 

the following differences can easily be obtained : 

(A.2Oe) 

b’-b”= -[$“;)].[+]. (A.200 

The integrals to be evaluated in equation (A.20~) are 

(AJOg) 
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Thus, 

(A.20h) 

(A.2Oi) 

(A.20) 

Inserting this value of K, in equations (A.20a) and (A.2Ob), A, and S, are easily obtained. They, in 
turn, give T, - T,. 

The time average of the difference x - T, which is required to determine the correction factor, is 

T,- Q = ~‘5: + F ln l1 - fX1, t2) 

K G [l - expf- &,)I[1 - exP(- ~3h)l 
I ” 2 { 1 - exp C- Ji(~, + z,>l> . 

(A.21) 

With equation (A.21) developed and the use of equation (A.14~) and the definition j3 = C2/t1, the 
correction factor @, can be obtained in the form 

@ = F(B) + x(& BY CL) (A.22) 

where F(b) and x(&f, /I, cl) are given in equations (5a) and (Sb), respectively, and n is the harmonic 
mean of the periods ; i.e. 

2 
n=-. 

_L+L 
(A.23) 

r, =h 

When j? approaches one, x(II, j?, p) attains the form of equation (7), as follows. As fi comes closer 
and closer to one, [l&I - l)] increases to higher and higher values. The asymptotic values of the 
Bessel functions for large values of the argument give the following equation in substitution of 
equation (5d) : 

or 

Hence, 

sin (J+J = 0. 

& = n7r. 

(A.24b) 

(A-2+) 

In the same manner, one can easily prove that 

lj-7 Cs(B - I)]ICG(B2QZ - 111 -+ (dm4. (A.25) 
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APPENDIX B 

The application of the lumped parameter technique of [4] to the present problem gives a check 
for values of L! + CO. The conditions of [4] are met completely in the present case since the method 
was used to check the validity of the previously derived results in a region where the periods become 
very large. The reference gives the equation 

where 

and 

In the present case 

dTn(z) d T,(4 
dz + a Tk) = a T,(z) + Y dz 

at 
r=- 

a2 

PCs1 Y=h(T.- TJ. 

h(T,- T,)=dg= -Fo. 

Equations (B.lb) and (B.2) give 

dT,_ Fo -H 

dt --pc,I= 
or 

Now, from equation (B.l) 

T, = Ht + K. 

dT,(t) acI d T,(t) 
7 + 3 T,(t) = z T,(t) + Y dt 

Therefore, 

T,(t)=Lexp -St +Ht+H(l--y)g+X. 
( ) 

Again from equation (B. 1) 

‘ii, - ‘ii, = ; 
[ 
2 - 4 {T,(z) - T,(O)} 

1 
. 

(B.1) 

(B. la) 

(B.lb) 

(B-2) 

(B.3a) 

(B.3b) 

(B.4) 

U3.5) 

w-5) 

Applying equation (B.5) to the heating and cooling periods, respectively, and referring to conditions 
of thermal equilibrium, one obtains 

(B.7a) 
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and 

-JY=(H”-H’)(l-y) ; (a2$$q%fq. (B.7b) 

These equations, after being inserted into the corresponding equations for T,(t) for the heating and 
cooling periods, respectively, together with equations (B.6) and (B.3a) give 

+ (H” - H’) (1 - y) 

x k-exp(-?)I[1 -exp(-F)] H’d2Y 

[1 -e~p(_E.f!!-F)] CT’ 

Now, 

Thus, 

T, - ‘ii, = (‘ii, - ‘ii,) P(1 

Therefore, 

Fo’ H’=-- 

PCS1 

Y)--(1 -Y)($)(++;) 
Jl-exp(-y)][l-exp(-y)] 

[1 -exp(-%-y)] 
I 
’ 

x(1-exp[-?])(I-exp[-F-F])}. 

For a hollow cylinder, this equation becomes 

1-Y--(1-y)(z)(*++)(l-exp[-y]) 

(1 -exp[-F])/(l -exp[-y-?])I]. 

1 03.8) 

(B.9a) 

(B.9b) 

(B.9c) 

(B.lO) 

(B.ll) 

(B.12) 
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6 
@=- 

o(g+ 1)’ 
1-,-(1-,)(,)($+$l-exp[-y]) 

x(1-exp[-y])/(l-exp[-y-y])]. (B.13) 

For very large periods 

(B.13a) 

The solution of the original differential equation by the Laplace transformation method is 

3 = c2. T,. Y(41/(~2 - 1) (B.14) - 
where 

XEI1 s J a 

and 

y(x) _ 1 Kl(X) ZI(BX) - K1u-w Z,(x) 
x [ Kl(P4ZdX) + &(4ZAB4 1 

(B.14a) 

(B.14b) 

Equation (B.14b) can be expanded in a series form to look 

y(x) = 1 + 3fi4-4f141nj!I-4/?2+1 
W2 - 1) 

1 x2+ [ 17fi4-13f12+2 -- _B”ln/? 

96 . 4 

+FVW--l)lnB x4+ 

W2 - 1) 1 
. . . . (B.15) 

Since by definition 

where 

y = 1 + Ayi(O) 

y;(o) = 1 
(fi - 1)2 y’(O) 

and 

equation (B. 13a) becomes 

0=/I 

- 6~;(0) 

@ + (B + 1) 

(B.16a) 

(B.16b) 

(B.17) 

where 
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Y;(o) = 
3jP-4jPlnjI-4/3*+‘1 

8(B*-l)(jb--l)* ’ 

1387 

(B.17a) 

Therefore, at the limit as I! + co, 

lirn G --) 3[P(4 In B - 3) + 48* - 1] 

ll-rco 4(8 - 1)3 (B + l)* 

which is the same as the expression (5a) for F(B). 

R&sm&-Un coefficient de transport de chaleur global a tte etabli pour des cylindres creux de longueur 
infinie chat&s et refroidis periodiquement. Ce coefficient de transport de chaleur corrige .comprend 
I’effet de la resistance de paroi et conserve la chaleur transport&s par p&ode. Le. traitement a et& generalid 
en considerant que le chauffage ou le refroidissement a lieu a la surface inttrieure ou extdrieure du cylindre 
creux. Pour 6value.r le coefhcient de transport de chaleur global, toutes les temperatures moyennes 
temporelles ntces.saires ont ttt determin&es theoriquement. Les expressions suivantes pour les rbultats 
numeriques ont tte calcul&.s sur un calculateur numtrique IBM 7094. Les resultats sont pre-sentes 
graphiquement sous la forme d’un facteur de correction pour le coe.ffrcient de transport de chaleur. 

Finalement, un exemple est present& pour montrer l’application pratique des resultats. 

Zasammenfasann-Ein Gesamtw%rmeiibergangskoeffient wurde entwickelt ftir period&h beheixte und 
gekiihlte Hohlxylinder unendlicher Lange. Dieser korrigierte Wiirmeiibergangskoeffient umfasst den 
Einfluss des Wandwiderstandes und beriicksichtigt die pro Periode iibertragene WBrmemenge. Die 
Behandlung wurde verallgemeinert durch die Annahme, dass die innere oder iiussere Oberfl%che des 
Hohlzylinders beheizt oder gektihlt wird Zur Berechnung des GesamtwPrmeftbergangskoeffienten 
wurden alle zeitlichen Temperaturmittelwerte analytisch bestimmt. Die sich ergebenden numerischen 
Ausdriicke wurden auf einem 7094 Digitalrechner ausgewertet Die Ergebnisse sind graphisch in Form 
eines Korrekturfaktors fiir den Wietibergangskoeffienten angegeben. Urn die praktische Anwend- 

barkeit der Ergebnisse zu zeigen wird ein Beispiel gerechnet. 

AEIiOTa~#fSI-~O3$$BinBeHT Tennoo6nrena nonyBeH J~JIB nepao~aBecHH HarpeBaeMnx B 
nOCnegOBaTHJtbH0 OXBa?fQaeMbrX nOJIbIX 6eCKOHeYHUX nBJtKHBpOB. 3TOT CKOppeKTKpOBaH- 
Hb& KO3@#JBuBeHT TenJIOO6MeHa BKnmYaeT BfjkjeKT COIIpOTHBJIeHKH CTeHKA I4 TWJIO, IIept?- 

AaBaeMoe 38 nepaoA. MeTOg o606rqaeTcB Ha HarpeB KnB OxjrarKAeHBe Ha BHyTpeHHeZt BJIB 
Ha BHf2UHefi IlOBepXHOCTI4 IlOJlOrO ~MinMH~p3. qTO6ld BbNACJIElTb KO3$l@kiIJMeHT TeIIJIO- 

06MeH3,HeO6XO~HMO aHaJXATB9eCKB OIIpeAenHTb BCeOCpf?AHeHHbIeBOBpeMeHki TeMIEpaTJ'pbI. 

%iCJIt?HHbE pe3J'JIbTaTbI 6nna EIOJIJ'WHbI Ha BbIYWCJIHTWIbHO# MNIEiHe 7094. h3yJIbTaTbI 

IIpeACTtlBJIeHbI lJU@WIt?CKK B BHAe IIOIIpaBOK K KOB$#i~H!2HTJ' TeIIJIOO6MeHa. kiJIJIIOCTpEl- 

pyeTcB nparrrKrecKoe nptrmeBeHae pe3ynbTaToB. 


