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Abstract—A lumped heat-transfer coefficient has been developed for periodically heated and subsequently
cooled hollow cylinders of infinite extent. This corrected heat-transfer coefficient incorporates the effect of
the wall resistance and preserves the heat transferred per period. The treatment has been generalized by
considering the heating or cooling to take place at the inside or at the outside surface of the hollow cylinder.
To evaluate the lumped heat-transfer coefficient, all the necessary time-mean temperatures have been
determined analytically. The subsequent expressions for numerical answers were evaluated on a IBM 7094
digital computer. The results are presented graphically in the form of a correction factor for the heat-
transfer coefficient. Finally, an example is presented to show the practical application of the results.

NOMENCLATURE posed at the boundary r=r,

A, constant of integration; [Btu/h];

A, constant of integration of the nth £ function defined by equation (A.14c);
term of the solution defined by G,, function of Bessel functions defined
equations (A.12), (A.20a, b), and by equation (A.12a);

(A.20); H, constant defined by equation (B.3a);

B, constant of integration; h, heat-transfer coefficient

B, constant of integration of the nth [Btu/hft?°F];
term of the solution during the h*, lumped heat-transfer coefficient
cooling period, defined by equations [Btu/hft?°F];

(A.20a, b) and (A.20); K, constant of integration defined by

b, constant of integration defined by equation (B.3b);
equation (A.7b); " factor related with the nth term of the

C, constant of integration ; solution and defined by equation

C, specific heat of conducting medium (A.20);

[Btu/lb°F]; k, conductivity of conducting medium

c, constant of integration defined by [Btu/hft? °F/ft];
equation (A.7c); L, constant of integration appearing in

F, function of the variable defined by equation (B.5);
equation (5a); I, volume of cylindrical wall per unit

Fy, constant representing heat flux im- surface area [ft];

_ 0. function defined by equation (5¢);
t Director, Heat and Mass Transfer Laboratory. " rad!uS; . .
1 Research Engineer, Heat and Mass Transfer Labora- 1 radius of heating or cooling surface

tory.

453

1373

[ft];
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ra, radius of insulated surface [ft];

T, temperature [°F];

T, space-mean temperature of conduct-
ing medium [°F];

T, temperature of hollow cylinder at the
heat-transfer surface, r = r; [°F];

T, bulk temperature of fluid in contact
with the hollow cylinder at the heat-
transfer surface [°F];

Ty, T,, two different solutions of T defined
by equations (A.7) and (A.12);

s, parameter of Laplace transforma-
tion;

t, time [h}];

X, variable defined by equation (B.14a);

¥ function of x defined by equation
(B.14b);

Y, first derivative of y, (dy/dx);

Z, function defined by equations (A.9)
and (A.10a).

Greek symbols

a, thermal diffusivity;

B, ratioof r, tory;

7, constant from [4] also defined by
equation (B.1);

0, radial wall thickness of hollow
cylinder [ft];

¢, dummy variable corresponding to 7;

o, function of 7 in the separation of
variables technique;

A, special decay constant from [4];

i, ratio of heating and cooling periods,
(Th/ Tc);

¢, ratio of radius to radial wall thick-
ness (r/0});

I, harmonic mean period, equal to
2/(1fz. + 1)

P, mass density of conducting medium;

g, constant from [4], also defined by
equation (B.1);

T, dimensionless time, (at/6%);

Ths dimensionless time span for heating;

T, dimensionless time span for cooling;

P, correction factor;

% function defined by equation (5b).
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Primed quantities refer to values of the res-
pective symbols during the heating period. The
same symbols represent the cooling period if
they are double-primed. Underlined letters
represent Laplace Transforms of the respective
symbols.

INTRODUCTION

IN CERTAIN engineering problems involving
periodic heat-transfer processes, the solution of
the differential equations describing the per-
formance of the system can be made easier by
means of a lumped heat-transfer coefficient.
The correction factor used for this purpose
accounts also for the effect of the wall resistance
besides the fluid resistance. Hausen, in his
studies on regenerators, developed a method to
determine such a correction factor corres-
ponding to the three cases of periodically
heated and cooled slabs, circular cylinders and
spheres [1]. Recently, Butterfield et al. [2]
developed a correction factor in a graphical
form by solving the pertinent differential equa-
tions by the finite difference technique. The
cases they treated were those for a hollow
square section, a hollow cylinder and a slab.

In the present paper a lumped heat-transfer
coefficient is developed for an infinitely long
hollow cylinder and a correction factor is
determined therefrom. The cylinder is being
heated periodically at one surface while the
other surface is insulated. The method employed
is similar to the analytical method of Hausen.
The main assumptions are that the heat-
transfer coefficients are constant and that the
temperature difference between the fluid tem-
perature and the cylinder wall surface tempera-
ture remains unchanged. This second assump-
tion essentially means that the cylinder is
heated by a constant heat flux.

The work of this paper was motivated by the
necessity of finding a lumped heat-transfer co-
efficient to use in the design of regenerative heat
exchangers having circular checkerwork
section. It must be pointed out that the assump-
tion of a constant temperature difference bet-
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ween the flowing gas and the surface of the wall
prevails essentially in the middle portion of the
regenerator [1].

STATEMENT OF THE PROBLEM

Given an infinitely long hollow cylinder of
circular cross-section, with constant properties
insulated along the periphery at r=r, and
periodically heated and cooled, respectively, by
applying a constant heat flux on the surface at
r =r,. The variable wall temperature is re-
placed by its space-mean temperature T,
(lumped wall). A lumped heat-transfer co-
efficient h*, is introduced to account for the wall
resistance and to keep the heat transferred per
period unchanged. With this postulation, A* is
defined as follows:

T T
h* (T, - T,)d{ = hg(TL -
[4]

Dd. O

The time-mean of equation (1) gives
W T, — Ty =T, ~ T)

1 [T -T,
R T -1

(2a)
or

(2b)
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where

k| T - T,
¢ = hé[ ’I_;] (3a)

It is shown in Appendix A that the correction
factor @, is a function of the harmonic mean
period I1, the ratio of the radii of the insulated
surface over the heat transfer surface, and the
ratio of the heating and cooling periods; i.e.

Equation (3a) reveals that ¢ can be obtained
from a knowledge of 7,, and T,, quantities that
can be found directly from the mathematical
solution of the problem. This solution is also
presented in Appendix A.

PRESENTATION OF RESULTS

The solution presented in Appendix A defines
the correction factor &, by the equation

®=Fp) + 8 11,p) &)

Equation (2b) is written in a more convenient Where
form below:
3[‘@In g —3) +4p* - 1]
1 1 ho F(p) =
Fal ] o T verr T ®
and
126 - DN (1 1
o= -2) () re )
(L= oxp[— 200 + W2} {1 —exp[ = ZOQ+ 2]} g
{1 —exp[— 2200 + w*/2ul}
Here,
0, = JilA/B — D). Y[ /(6 — 1] — Jo[BA/(B ~ )]. Yi[A(B — 1)] 59
" N[AB = D] Y[ A8 = 1] = Jo[4/(B — D]. ¥,[4/B - 1]
and /, are the roots of the equation
J1[4/(B = DIN[B4,/(B — D] — J1[BA/(B — 1)] Y1[2/(8 — 1)] = 0. (5d)
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This equation was solved on an IBM 7094
digital computer and the roots, 4, were deter-
mined. Some of the roots were also compared
with the values given in [3]. The first five roots
of equation (5d) are listed in Table 1.}
Equation (5) was also programmed and
solved for @ on the 7094 computer. The results
are presented in graphical form in Figs. 1-6,
where & is plotted versus 1/IT with y and § as
parameters. In the limiting case of IT approach-
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ing infinity, i.e. II - o0 or 1/IT — 0, equation

(5) becomes lim & = F(§)

- o

(6)

since
lim (8,11, i) = 0.
-«

On the other hand, if § approaches the value of
one, F(P) attains the value of 1 and x(8, I1, p)
takes the form

00
2.2
i oo = 2 1 {1 —exp[— n’*=*(1 + p) I1/2u]}
lmX(Bs 9“)_ _77- 4 1 2 21 2
g1 4 (nm) {1 —exp[—- n’=n*(1 + w? I1/2u]}
n =—
{1 —exp[— nin®(1l + W02l ()
Thus,
o
oo 2 [ 1 ] {1 —exp(= [n*n%(L + W I126])} . {1 — exp(= [w*n*(1 + ) 11/2])}
put i 2: ()" (1= exp (= [nnX(1 + W7 12}
(8)
Table 1
B A4 Az A3 Ag s
002 —3-75967 — 689038 —10-00041 —13-24224 —1621753
01 —3-54685 —6-59754 —9-67347 —12-76974 —15-87900
02 —3-38860 —6-44432 —9-54128 —12-65684 —1578164
04 —3-23471 —6-33464 —9-45988 —12-59292 — 1572929
05 —-319658 -631235 —9-44447 —12-58120 —15-71992
06 —317204 — 629891 —943533 —12-57431 —1571432
0-8 —3-14751 — 628616 —9-42676 — 1256786 —15-70916
1-0 315149 628319 942478 12:56637 1570796
12 2-14555 628532 942610 12:56737 1570876
14 3-15498 628997 9-42926 12:57005 15:71069
1-5 3-16094 629306 9-43149 12:57134 1571225
16 3-16746 6-29648 9-43369 12:56540 1571332
18 3-18169 6-30407 9-43882 12-47693 15-71367
20 3-19658 6:31235 9-44447 1258120 1571992
2:5 3-23471 633464 945988 12-59292 1572929
30 3-27128 635768 9-47618 12-60544 15-73942
35 3-30500 638052 949274 1261829 15-74987
40 3-33563 6-40269 9-50922 12:63122 15-76046

1 The roots for § < 1 are deduced {rom the roots for
B > 1 by the equation A, = — Aui/p)-

Equation (8) is identical with Hausen’s equation
for a slab, which is the limiting case when B
approaches one.
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The validity of the results of the present paper
for large values of the periods has been proven
by the lumped parameter technique of {4] and
is presented in Appendix B.

A comparison of the results of this paper with
those developed in [2] shows a large dis-
crepancy for all IT > 025 (see Fig. 4). It is
interesting to observe that the larger the
harmonic mean of the periods, the larger the
difference between the values of @ in the two
papers. The results of the present paper for
large values of IT have been checked by the
method of {4], which is presented in Appendix
B. The following example will help the reader
apply these results.

Example. A cylindrical regenerator of LD.
0-125 ft and O.D. 0-25 ft is made of superduty
fireclay brick with the following properties:
p = 100-140 Ib/ft3, ¢ = 0-3 Btu/Ib°F, k =09
Btu/hft°F, o = 0:9/0:3 x 120 = 0025 ft?/h. The

SN

]

o
~
w
Fy

F1G. 6. Correction factor, @, for u = 5 and f = 1-0, 20, 30,40,

heat-transfer coefficients during the heating and
cooling periods are 8 and 6 Btu(hft>°F, res-
pectively. For a heating period of 3 h and a
cooling period of 1 h

L 0025x1 .8 0025x3 24
"TU0125 ST T T 01252 s

where 0125 = dandd =r, — r,.

1 _ 45 31_3
I 2|8 24| 12

Fig 5, with u = 3 and § = 2, gives ¢ = 09,

11 0125 1
st 39T
1_1+0»9 0125 5
w6 3x09 24
Hence,
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APPENDIX A

The differential equation governing the heat flow in the system is
ﬂ 1T 10T

o i a aa

The boundary conditions pertinent to the problem are

aT

§=0 at r=r,
o _ _Fo o oo
ar— k a T—-—rl.

The initial conditions are those of cyclic equilibrium, namely
T'(0) = T"(z)

T'(ry) = T"(0).
Method of solution
Introducing the dimensionless parameters
r ot
f = 3 and T= 5—2
the above equations become
T 10T _or
8 ko o
aT
% =0 at £{=¢,
or Fyé
ES at {=¢,

(A1)

(A.2a)

(A-2b)

(A.2c)
(A.2d)

(A.3)

(Ad)

(Ada)

(Adb)

This nonhomogeneous problem can be broken into two simpler ones. Thus, we select
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T=T, +T, (A.5)

where T, must satisfy equations (A.4), (A.4a), and (A.4b) and T, must satisfy equations (A.4), (A.4a)
and

%:0 at &=¢,. (A6)
From equations (A.4), (A.4a), and (A.4b), solved for T;, one can easily ascertain that
T,=at’> +blné +ct A7
where
a = (Fo8¢,)/[2k(&3 — &D)] (A.7a)
b= — (Foo&,&)/[ME3 — &3] (A.7b)
¢ = (2Fo0¢,)/[k&S — &) (A7)

Meanwhile, equations (A.4), (A.4a) and (A.6), with T = T,, take the form
T, 10T, _ 0T,

@ T w (49)
oT, _
_a—é— = 0 at é = 62 (A'Sa)
o1, _
52-_0 at &=¢&,. (A.8b)
Separation of variables with
T, = Z(5)O(7) (A9)
renders the solutions
Z(§) = AJo(AS) + BYy(4d) (A.10a)
and
O(1) = Cexp(—4%1) (A.10b)

where 4 is a constant.
The application of the boundary conditions (A.8a) and (A.8b) on equations (A.10a) gives the
following transcendental equation, the solution of which supplies information on the eigenvalues 4,,:

J1(A)) . Y1(A€y) — J1(A8y). Yi(AL,) = 0. (A.11a)
Also

_ Yl(ln€2)= _ Y1(4.€1)
= - B3z T Bracy

(A.11b)



Thus,

where

Now,

or

Since

equation (A.13b) gives

or

where

fEn&) =5E+ &)+
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’TZ = Zl Anexp(_ 131:) Gn

G, = Yo(hnl) J1(4a€1) — Jo(Aad) Yi(AaS1).

AT j ET(@ de.

1

j’ ET (O dE = 0,

Tm =ctT + f(él, 62)

T,=T + f(¢,&) —at® —bIn¢

&

Equation (A.14b) can be written for T, as follows:

Ti=T,+al>+blnf— f(¢, &)

b b
—jf(éﬁ In¢, - ¢im¢,) - >
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(A.12)

(A.12a)

(A.13a)

(A.13b)

(A.14a)

(A.14b)

(A.14c)

(A.15)

Thus, the complete solution of the original differential equation for T, under boundary conditions

(A4a) and (A4b) is

T = Tu@) +ag + blng — fEu &) + 3, Ay exp(= 220Gy

(A.16)
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During the heating and cooling periods, the following equations hold, respectively:

T'= Ty +a&® +b'Iné— f1(§, &) + 21 A, exp (— 427) G(A,0) (A.17a)
T" =Ty + a8 +b"Iné — "¢, &) + i B, exp (— 437) G,(4:0). (A.17b)

The constants A, and B, are then determined from the conditions of cyclic equilibrium:
T'0) = T"(z,) (A.2c)
T'(z,) = T"(0). (A.2d)

Thus,

@—a)&+@E -b)nl+ f'Cué) — fCné) = i (Byexp (— 471) 4,) G,(40)  (A18)

n=1

0

@-a)8+ 0 -v)Vé+ €& — f61,8) = ; [B. — Ay exp (= 4274)] Go(A:2).

(A.19)
The usual orthogonality relations provide the following system of equations for A4, and B,:
B,exp(—A2t) — A, =K, (A.20a)
B, — A,exp(— ALn)= K, (A.20b)
where
jj [(@ —a)& + (b —b)EnE] G (A8 de
K, = (A.20c)

&2

| ¢GHa,0 ¢

1
=1

Introducing the corresponding equations for @', a”, b, and b” and using the heat balance relation
vt = Fr, (A.20d)

the following differences can easily be obtained :

r_ Fé)aél Th+rc

@ -a _[2(é§—¢§)k]'[ - ] (A.20c)
[ Fadtd r..+rc] s
br-br= [k(f%—ff)]'[ | (A-200

The integrals to be evaluated in equation (A.20c) are

&2
Ef $ GO AE = 3[& GI&,) — &1 Gagy)] (A.20g)
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f G(&)dE = [ef% G&s) — E1GED] (A20h)
Gul&2) ~ Gil&1) (A.20i)

I {nEGHdl = T

51
Thus,

o —_ 2AB-1DGE)
" AL G - GiE)]
Inserting this value of K, in equations (A.20a) and (A.20b), 4, and B, are easily obtained. They, in
turn, give T, — T,,.
The time average of the difference 7, — T,,, which is required to determine the correction factor, is

T -T,= a8 +bin¢ — [

1N [ — exp(— 25)][L - exp(= 425)]
'E’ZK"G" T -ewl- a5l O

With equation (A.21) developed and the use of equation (A.14c) and the definition § = £,/¢,, the
correction factor @, can be obtained in the form

® = F(B) + xUL, B, 1) (A.22)

(A.20)

where F(B) and x(I1, B, u) are given in equations (5a) and (5b), respectively, and IT is the harmonic
mean of the periods; ie.

2
o= T (A.23)
J— +__..
T, Tp

When f approaches one, (11, f, u) attains the form of equation (7), as follows. As 8 comes closer
and closer to one, [1/(# — 1)] increases to higher and higher values. The asymptotic values of the
Bessel functions for large values of the argument give the following equation in substitution of

equation (5d):
A 3n\,. [ BA 3m BA, 3n\ .. [ 4, 3m\ _
cos(ﬂ_l—z—) sm(ﬂ_1 4) os(ﬁ_l—ua-)sm(ﬁ__l——i—)—o (A.24a)
sin (4,) = 0. {A.24b)

or

Hence, A, = nm. (A.24¢c)

In the same manner, one can easily prove that

Liljll [6(8 — D/[A2(B*QF — D] - (nm)~*. (A.25)
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APPENDIX B

The application of the lumped parameter technique of [4] to the present problem gives a check
for values of I — oo. The conditions of [4] are met completely in the present case since the method
was used to check the validity of the previously derived results in a region where the periods become
very large. The reference gives the equation

dT,(7) dT7)

P +o0T(t)=0Tf)+y i (B.1)
where
t
7= % (B.12)
and
pcd 0 (7, — (B.1b)
In the present case
T, — T) = k-éa—T = — F,. (B.2)
Equations (B.1b) and (B.2) give
dT, F,
2= _ =H B.3
dt oCl (B.32)
or
T, = Ht + K. (B.3b)
Now, from equation (B.1)
dT,,,(t) . oo _ dT(t)
3w Te= Ts(t) +Y g (B4)
Therefore,
52
Ts(t)=Lexp( 757 )+Ht+H(1 —y)—+K (B.5)
Again from equation (B.1)
— = 14T,
T,-T,= [E -1 - T(O)}] (B6)

Applying equation (B.5) to the heating and cooling periods, respectively, and referring to conditions
of thermal equilibrium, one obtains

52 1 —exp(— o1./7)
L=(H'—H)(1- y)( ) | — oxp (, o1, _ ﬁ) (B.7a)
Y
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and
52 1 — exp(— o1/y)
-I'=H —H)(1-y)(£) 1—exp<—%—%) : (B.7b)

These equations, after being inserted into the corresponding equations for Ti(f) for the heating and
cooling periods, respectively, together with equations (B.6) and (B.3a) give

_ 1| 52
T-1,= 5% L@ - ma —v)(y )
ooty
oo () -eel 5]
x Y Y/ (B.3)
1—exp<—&—ﬂf] o
) 1
Now,
’ FO’
—oCl (B.9a)
F, T
H' — H =-—2%(1+2 )
Cl + rc) (B.9b)
_ _ F,’
T.-T,= — }:’ (B.9c)
Thus,

Y e S\/1 1
L-T.=(1,—- D(E) 1l -y -Q1- V)(—G“)(—r: +Th)

S [1 _ exP,(“ %)] [1 P (‘ %)] . ®10)

Therefore,
1 1 h &2 (1 i
F_W[l -+ olk {1 —'))—(1 —')’);(‘T—c'{"—r—h (1 — €X

|
R e [
)

1 1 Ké 6 N1 1
S e 1+ Ny =-nlEN—=+—
h*' h’[ + 3k “o(f + 1){1 v-a y’(a)(tc + T,

(-l -5 o
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Thus,
6 Pyl 1 o1y,
ol LR iy (R R )
%% )1 - _ T _ 0%
x(l—exp[ y])/(l exp[ . y])] (B.13)

. 6(1 — v)
Jm &~ BEFD

Th 0

For very large periods

(B.13a)

The solution of the original differential equation by the Laplace transformation method is

T, = [2. 5.y )/(8* — 1) (B.14)
where
Xx=r \/ 2 (B.14a)
and
— 1 K, (x) I;(Bx) — K,(Bx) I,(x) B.14b
)=y [Kl(ﬂx) Iox) + Ko(®) Il(ﬂx)]‘ (B.14b)

Equation (B.14b) can be expanded in a series form to look

, 364 —4B*In B — 4B + 1 1784 — 132 +2 .B*InB
Y(")=1+[ 8% — 1) ]"2+[ % . 4
g2Inp - 1)Inp| ,
+ 8B 1) ]x +.... (B.15)
Since by definition
y =1+ Ay1(0)
where
’ _ 1 ’
¥10) = G-1p y(0) (B.16a)
and
g=1 (B.16b)
equation (B.13a) becomes
—6y1(0) (B.17)

T B+

where



A LUMPED HEAT-TRANSFER COEFFICIENT 1387

364 —48*Inf — 48 + 1

»(0) = S D@17 (B.17a)
Therefore, at the limit as IT — oo,
3[*@4In B — 2
lim @ — P GIp —3) + 4" — 1] (B.18)

gew . HB—1P(B+ 17

which is the same as the expression (5a) for F(f).

Résumé—Un coeflicient de transport de chaleur global a été établi pour des cylindres creux de longueur
infinie chauffés et refroidis périodiquement. Ce coefficient de transport de chaleur corrigé comprend
Peffet de la résistance de paroi et conserve la chaleur transportée par période. Le traitement a été généralisé
en considérant que le chauffage ou le refroidissement a lieu A la surface intérieure ou extérieure du cylindre
creux. Pour évaluer le coefficient de transport de chaleur global, toutes les températures moyennes
temporelles nécessaires ont été déterminées theoriquement. Les expressions suivantes pour les résultats
numériques ont été calculées sur un calculateur numérique IBM 7094. Les résultats sont présentés
graphiquement sous la forme d’un facteur de correction pour le coefficient de transport de chaleur.
Finalement, un exemple est présenté pour montrer I’application pratique des résultats.

Zusammenfassung—FEin Gesamtwirmeiibergangskoeffizient wurde entwickelt fiir periodisch beheizte und
gekiihlte Hohlzylinder unendlicher Linge. Dieser korrigierte Wirmeiibergangskoeffizient umfasst den
Einfluss des Wandwiderstandes und beriicksichtigt die pro Periode iibertragene Wirmemenge. Die
Behandlung wurde verallgemeinert durch die Annahme, dass die innere oder dussere Oberfliche des
Hohlzylinders beheizt oder gekiihlt wird. Zur Berechnung des Gesamtwirmeiibergangskoeffizienten
wurden alle zeitlichen Temperaturmittelwerte analytisch bestimmt. Die sich ergebenden numerischen
Ausdriicke wurden auf einem 7094 Digitalrechner ausgewertet. Die Ergebnisse sind graphisch in Form
eines Korrekturfaktors fiir den Wirmeiibergangskoeffizienten angegeben. Um die praktische Anwend-
barkeit der Ergebnisse zu zeigen wird ein Beispiel gerechnet.

Anvoranua-—Hosdpduuuent rermoobMeHa NOXy4YeH [JA HePHOTMYECKM HAarpeBaeMHX M
HOCJIeAOBATKIBHO OXJaKAAeMHX HOJHX 0eCKOHEYHHIX HUJIMHAPOB. DTOT CKOPPEKTHPOBAH-
HHI KoagPuImeHT TenrooGMeHa BKIOYaeT 3PdexT CONPOTUBIEHHUA CTEHKH M TeIJIO, Iepe-
maBaemoe 3a mepuox. Merox ofo6uiaeTcA HA HarpeB MM OXJasKIXeHHe Ha BHYTDeHHel WM
Ha BHeIHell TOBEPXHOCTH NONOT0 UMAMHApPA. YTOOH BHYMCAUTH KOIPHULHEHT TEITO-
o6MeHa, HeOOXOAMMO AHANUTHYECKH ONPEeAeSNTh BCe OCPeHEHHbIe BO BpEMEHHN TeMIepaTyphl.
YucieHHble pe3yNbTaTH ObLIM HMOJYYeHH HA BHYMcauTeabHON MaummHe 7094. Pesynbrarst
npencraBieHH rpaguueckd B BHAE MONPABOK K Koadduumenty remnmoobmena. Wmmocrpn-
pyercA NMpaKTHIeCKOe MpHMEHeHMUe pe3yJabTaToB.



